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Abstract. The intensity and degree of coherence in a field due to a slit illuminated 
by a line source are studied. The  propagation of the mutual coherence of a poly- 
chromatic light beam is used to obtain the intensity and the degree of coherence 
due t o  the slit at points distant from those at the slit. The variation of the intensity and 
of the degree of coherence with different variables are studied. 

1. Introduction 
I n  interference theory it is well known that the intensities and amplitudes of the 

interfering beams are added up for the cases of incoherent and coherent sources respec- 
tively. These two cases are mathematically the most simple and have been dealt with 
extensively in textbooks. But, in practice, no sources fall into either of these categories. 
Masers are known (Mandel 1961) to be partially coherent. The  thermal sources which 
are incoherent, to a good approximation, are seldom used directly. We always obtain an 
experimental source by limiting the radiation of a parent source through a slit or else by 
concentrating its light on the slit by an optical system. If we keep the slit at a distance D 
from the parent thermal source, of area S,  the slit will contain coherent patches extending 
over an area of the order of XzD2/4S (Mandel 1961), where h is the mean wavelength. 
By coherent patches, we mean an area over which the fields at any two points have appre- 
ciable correlation. Even when the light is concentrated on the slit by an optical system, 
the slit contains coherent patches. This is because, in all practical cases, a point of the 
source does not form a point image. Obviously, the area of the coherent patches in this 
case is the same as the area of the image of any point. Investigation of partial coherent 
sources is thus important not only from the theoretical but also from the experimental 
point of view. 

Extensive work (for a complete bibliography see Mandel and Wolf 1965) has been 
done in the field of partial coherence during recent years. The  earliest papers on this 
subject are due to van Cittert (1936) and Zernike (1938) who have independently calculated 
the mutual intensity and degree of coherence for light from an extended, incoherent, 
quasi-monochromatic source. More recently, interest in the field of partial coherence has 
been concerned with image formation in partially coherent illumination (De 1955, Slansky 
1955, Manzel 1958, Steel 1959, Slansky and MarCchal 1960), diffraction of partially 
coherent light by a plane aperture (Parrent and Skinner 1961), intensity interferometry 
(Hanbury Brown and Twiss 1956, 1957 a, b, Twiss and Hanbury Brown 1957, Rebka and 
Pound 1957, Mandel 1958, 1959, Twiss and Little 1959, Fano 1961), transient interference 

.effects (Neugebauer 1962, Mandel 1962, Magyar and Mandel 1963), interference with 
partially coherent light (Thompson and Wolf 1957) and propagation of partially coherent 
light (Hopkins 1951, W701f 1954, 1935, 1958, Parrent 1959). Pancharatnam (1956) has also 
studied the interference of two partially coherent beams in different states of polariza- 
tion. 

Born and Wolf (1962) and Wolf (1955, 1958) have studied the propagation of mutual 
coherence and expressed the mutual coherence at any two points in terms of the mutual 
coherence and its derivatives at two points on a surface enclosing these two points. We use 
this expression to study the intensity and the degree of coherence due to a partially 
coherent source. The  partially coherent source is obtained by illuminating a narrow slit 
by a parallel thermal line source and the optical disturbances are taken to be scalar signals 
for the sake of simplicity. 
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I n  $ 2  the mutual coherence at the slit, which is being illuminated by a thermal line 
source, is obtained. I n  5 3 we use the expression for the propagation of mutual coherence 
to obtain the mutual coherence at two points on the other side of the slit from the mutual 
coherence at the slit. I n  5 4 the variation of the intensity and the degree of coherence with 
different variables are studied. 

2. Intensity and degree of coherence due to a line source 
Let us consider an experimental arrangement in which a thermal line source of length 

2L  illuminates a parallel narrow slit of length 2a and of width d ( d  g 2a), the line joining 
the midpoints of the source and the slit being perpendicular to the source and to the 
plane of the slit. Let us divide the source into small elements of lengths dE,, dl,, ... 
situated around the points rl, r2,  ... which emit radiation independent of each other. 
If V ( y ,  t )  is the disturbance at the point y at time t ,  we have (taking c = 1) 

V ( Y , t )  = c lY-rm\-l dwA(r,, W)exp{-iw(t-lY-r,l)) (1) 
m 1: 

where A(rm, U )  is the strength of the mth source in the frequency region near w .  The  
mutual coherence function r(y, ,  y 2 ;  tl, t2), defined as 

r(Y1,Yz;  tl, t2) = W * ( Y I ,  tl)V(Y2> t 2 ) )  (2 )  
in which the angular brackets denote an ensemble average, is given by 

r ( Y l , Y 2 ; t l , t 2 )  = 2 IY1-rml-11Y2-rnl-1 J," j," dw1 dw2 (A*(?,, w1)A(rn, w 2 ) )  
m ,  n [ 
x e x p h ( t 1  - IY1- r,l> - iwz(t2- lY2 - ..I,)] * (3) 

If the luminous intensity per unit length of the source is constant and is equal to Io,  
we have, writing the intensity as (V*V),  

(A*(rm,  4 4 r n 7  w2) ) = I o h " ( W 1 -  w2)g(wl)Alm (4) 
where g(wl) is the spectral distribution normalized to unity. On using equation (4) and 
changing the summation into an integration, equation (3) gives 

L m 

r(YlYY2:t lJ  t 2 )  = Gj d r l Y , - r [ - 1 [ Y 2 - ~ [ - 1  j dwg(4  
-L 0 

xexp{iw(t,-t2- IY1-rl+ Iyz-rl)} ( 5 )  
where we write? r as ( r ,  0, 0). 

tion over r ,  
For points y 1  = (yl, 0,  S ) ,  y 2  = (y2, 0,  S )  on the slit equation (6) gives, after integra- 

m 

r ( y l ,  ~ 2 ;  h, t2) = 2(IoL/S2) 1 dw exp{iw(tl-t2)1g(w) 
0 

if wa2/S, wL4/S3, a2/S2 and L2/S2 are very much less than unity. In  the quasi-mono- 
chromatic approximation (Pancharatnam 1963, Beran and Parrent 1964, p. 53), i.e. when 

t We take the 1 axis along the source and the 3 axis along the line joining the midpoints of the 
source and the slit; the origin is at the centre of the source. 
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the function g(o )  is appreciable only for 

wO-AU < w < wO+AU 

(Aw/wo being very much less than unity) and effectively zero outside this region, and 

the integrand in equation (7) can be replaced by 

Equation (6) then reduces to 

3. Intensity and degree of coherence due to the partially coherent slit 

obeys the equation 
For points x1 and x2 in the field of the slit the mutual coherence I’(xl, x2;  t l ,  t 2 )  

as this region does not contain any source. If we write the mutual coherence function as 

dwl dw, exp{i(wltl- w2tZ))r(%, XZ;  wl, 4 (11) ia 1,“ 
d w l  dw, exp(i(o,t, - w2t,)) 1 jdZY1dZY2 i,” 101 A 

q x 1 ,  $2; t,, t2) = 

the solution of equation (10) can be written as 

q x 1 ,  * z ;  t,, t 2 )  = 

x K*(% Y1 ,  wl)K(%, Y z ,  wz)T(Y1, Y2;  W1, 4 (12) 

where A is a surface which encloses the points x1 and x2 but not any source, and K ( x l ,  j 2 ,  w J  
is given by 

a 
CnA 

K ( %  Y t ,  9) = -7- G(%, Yz’, ~Z)I4’, ’=Y1 (13 )  

E/&, being the differentiation along the outward normal to the surface A and 
G(xi, yi’ ,  mi) being the Green function satisfying the equation 
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For the experimental set-up described in the previous section, K(xi, y i ,  wi)  is given by 
(Beran and Parrent 1964, p. 40) 

if 

and 

n being the unit vector perpendicular to the slit. On using equation (16), equation (12) 
reduces to 

x q Y D Y 2 ;  t l - l x l - Y , [ ,  t 2 -  l%-Y21)* (17) 
We wish to find the mutual coherence between two points in the field of the partially 

coherent slit. For this, we take A to be consisting of the plane of the slit and the surface 
at remote distances at which V(y ,  t )  vanishes. For x, = (xi, 0, R), i = 1, 2, equations (17) 
and (8) give 

rp,, 3,; t,, t2)  = 

If x J R  and x2/R are very much less than unity, and only their leading terms are retained, 
equation (18) reduces to 

(19) 
On performing the integrations over y ,  and y2,  and introducing A, = 27i'/w0, the wave- 
length corresponding to the mean frequency w o ,  we obtain 

I,d2a 1 
t ,  - t ,  - - (x12 - xa2)  

R rl(% $2; t,, t 2 )  = 2nAoSR2 

+ si{2(p2 + .>> - si{2( ,~,  - v , > )  - si(2(p2 -.)}I) (20) 

where /3, = 2*axq'XOR, p2 = 2riax2/AoR, 2/3 = P1-p2, v, = 27iaL/XOS and Ci(x) and 
Si(x) are the functions defined by the equations 

cost s in t  
dt-, Si(x) = Io dt t. 

w t  
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I t  should be remembered that in equation (21) Io  is the luminous intensity per unit area 
of the source of length 2L, 2a and d are the length and the width, respectively, of the slit A 
and S is the distance of the slit from the source. 

T o  obtain the intensity, we put x1 = x2 = x, tl = t2 = t in equation (21); this gives 

where ,Bo = 2.7iiax/hoR. The degree of coherence is then given by 

1 1 
2 [2i[ R 

y(x , ,  3c2; t,, t2 )  = - exp - t ,  - t2 - - (x12 -.i.22))] 

sin2 (p, - K) sin2 (pl + K) 
i si{2(pl +E)) - si(2(p1 - - 

p1-K Pl+% 
-112 sin2 (p2 - r x )  sin2 ( p a  +E) 

/ 3 2 + %  
+ si(2(p, + E)) - Si{2(p2 - x ) } ]  1 .(23) - 

4. Discussion 
From equation (10) the degree of coherence at the slit can be written as 

where E = X0Si27,.L. Thus our experimental source, namely the slit A, contains coherent 
patches which extend over a length of order E. We now consider two special cases: the 
limits E --f x when the slit A is coherent, and E --f 0 when A is incoherent. In  the co- 
herent limit equations (23) and (24) give 

and 

where Yo = 21,L is the total luminous intensity of the source. In  the incoherent limit 

Here we note the contrast that, while in the coherent limit jycohl is always unity and the 
intensity 1(x) depends on x, the distance of the point x from the principal axis, in the 
incoherent limit it is lylnCOh,,  which depends on the position of the points xl, x2, and the 
intensity I(x) is independent of x in our approximation. The  variation of degree of co- 
herence with 1/31 is shown in figures l and 2 for c! = 0.5, 1.0 and p = t@,+ p 2 !  = 0.0,0.5. 
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IPl 
Figure l. Variation of the degree of co- Figure 2. Variation of the degree of co- 
herence ] y ( x I ,  xZ,  0)l with lpli for herence Iy(xi, x a ,  0)l with lBlt for 

6 = 0.0 and v. = 0.5, 1.0. p = 0.5 and v. = 0.5, 1.0. 

BL I Pol 

Figure 3. Variation of the intensity I 
with a i s .  A = 7ihaR2/210dZ and 

B = 2rL/Xo. 

Figure 4. l'ariation of the intensity 
I with 'bo for v. = 0.5, 1.0. 

t f i  = 0.0 corresponds to xi +xz = 0, i.e. the situation in which the two points are symmetrical 
cm 

cm with ho = 5790.5. T o  obtain a = 1.0, one may double L, the length of 

cm 

about the principal axis. T o  obtain tl = 0.5, one may take S = 2.00 x l o 2  cm, L = 5.00 x 
and a = 1.84 x 
the source. 

with A,  = 5790.i. 
$ = 0.5 corresponds to ~ 1 - i - x ~  = 0.10 cm for R = 2.00 x loz cm and a = 1.84 x 
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From equation (23) we see that the intensity is symmetrical about the principal axis, 
i.e. I( - x) = I(.). For x = 0, i.e. for points on the principal axis, equation (22) gives 

2.Y0a2d2 sin2u s inzu  
hO2S2R2 (7 - -1 a 2 

q x  = 0) = 

When a ,  d ,  S ,  R and the total luminous intensity of the source, .Yo (=  210L), are kept 
fixed, the intensity is a maximum at L = 0 (i.e. when the source is coherent; u = 0 in 
equation (27)) and then it decreases as L increases. If I,, d ,  L and R are fixed, by writing 
equation (27) as 

210d2 a sin2 a 
I ( x  = 0) = - - ( ~ i ( 2 u )  - -1 

nX,R2 S x 

we see that the intensity is zero at a i s  = 0 and goes on increasing with increasing a i s .  Varia- 
tion of the intensity with a / S  is shown in figure 3. 

When lPol # 0, the intensity has a maximum or minimum when 

or 

Maxima or minima occur according as tan IPo,(tan2 %-tan2 \Po l )  is greater or less than 1, 
respectively. The  variation of intensity with IP,] for U = 0.5, 1.0 is shown in figure 4. 
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